Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils
نویسندگان
چکیده
Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation ((14)C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management.
منابع مشابه
Cropping systems modulate the rate and magnitude of soil microbial autotrophic CO2 fixation in soil
The effect of different cropping systems on CO2 fixation by soil microorganisms was studied by comparing soils from three exemplary cropping systems after 10 years of agricultural practice. Studied cropping systems included: continuous cropping of paddy rice (rice-rice), rotation of paddy rice and rapeseed (rice-rapeseed), and rotated cropping of rapeseed and corn (rapeseed-corn). Soils from di...
متن کاملAutotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette
To quantify the contribution of autotrophic microorganisms to organic matter (OM) formation in soils, we investigated natural CO2 vents (mofettes) situated in a wetland in northwest Bohemia (Czech Republic). Mofette soils had higher soil organic matter (SOM) concentrations than reference soils due to restricted decomposition under high CO2 levels. We used radiocarbon (1 C) and stable carbon (δC...
متن کاملEffect of Water-Filled Pore Space on Carbon Dioxide and Nitrous Oxide Production in Tilled and Nontilled Soils
The percentage of soil pore space filled with water (percent waterfilled pores, % WFP), as determined by water content and total porosity, appears to be closely related to soil microbial activity under different tillage regimes. Soil incubated in the laboratory at 60% WFP supported maximum aerobic microbial activity as determined by CO2 production and O2 uptake. In the field, % WFP of surface n...
متن کاملEffects of Tillage and Nitrogen Fertilizers on CH4 and CO2 Emissions and Soil Organic Carbon in Paddy Fields of Central China
Quantifying carbon (C) sequestration in paddy soils is necessary to help better understand the effect of agricultural practices on the C cycle. The objective of the present study was to assess the effects of tillage practices [conventional tillage (CT) and no-tillage (NT)] and the application of nitrogen (N) fertilizer (0 and 210 kg N ha(-1)) on fluxes of CH(4) and CO(2), and soil organic C (SO...
متن کاملMechanisms of Soil Aggregates Stability in Purple Paddy Soil under Conservation Tillage of Sichuan Basin, China
Abstract: Ridge culture is a special conservation tillage method, but the long-term influence of this tillage system on soil aggregate-size stability in paddy fields is largely unknown in southwest of china. The objectives of this paper are to evaluate soil aggregates stability and to determine the relationship between SOC and soil aggregate stability.Soil samples at 0-20 cm layer were adopted ...
متن کامل